Optimized strong stability preserving IMEX Runge-Kutta methods

نویسندگان

  • Inmaculada Higueras
  • Natalie Happenhofer
  • Othmar Koch
  • Friedrich Kupka
چکیده

We construct and analyze robust strong stability preserving IMplicit–EXplicit Runge–Kutta (IMEX RK) methods for models of flow with diffusion as they appear in astrophysics, and in many other fields where equations with similar structure arise. It turns out that besides the optimization of the region of absolute monotonicity, some other properties of the methods are crucial for the success of such simulations. In particular, the models in our focus dictate to also take into account the step size limits associated with dissipativity, positivity of the stiff parabolic terms which represent transport by diffusion, the uniform convergence with respect to different stiffness properties of those same terms, etc. Furthermore, in the literature, some other properties, like the inclusion of a part of the imaginary axis in the stability region, have been argued to be relevant. In this paper, we construct several new IMEX RK methods which differ from each other by taking various or even all of these constraints simultaneously into account. It is demonstrated for some simple examples as well as for the problem of double–diffusive convection, that the newly constructed schemes provide a significant computational advantage over other methods from the literature. Due to their accumulation of different stability properties, the optimized IMEX RK methods obtained in this paper are robust schemes that may also be useful for general models which involve the solution of advection–diffusion equations, or other transport equations with similar stability requirements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit-explicit schemes based on strong stability preserving time discretisations

In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.

متن کامل

High Order Implicit-Explicit General Linear Methods with Optimized Stability Regions

In the numerical solution of partial differential equations using a method-of-lines approach, the availability of high order spatial discretization schemes motivates the development of sophisticated high order time integration methods. For multiphysics problems with both stiff and non-stiff terms implicit-explicit (IMEX) time stepping methods attempt to combine the lower cost advantage of expli...

متن کامل

Implicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations

We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...

متن کامل

Implicit-Explicit Runge-Kutta Schemes and Applications to Hyperbolic Systems with Relaxation

We consider implicit-explicit (IMEX) Runge Kutta methods for hyperbolic systems of conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stabilitypreserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit Runge Kutta (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero relaxation limit. High accuracy in space...

متن کامل

Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations

Implicit-explicit (IMEX) linear multistep time-discretization schemes for partial differential equations have proved useful in many applications. However, they tend to have undesirable time-step restrictions when applied to convection-diffusion problems, unless diffusion strongly dominates and an appropriate BDF-based scheme is selected (Ascher et al., 1995). In this paper, we develop Runge-Kut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 272  شماره 

صفحات  -

تاریخ انتشار 2014